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Abstract
In the continuous-time domain, Maximum-Likelihood (ML) detection of a chirp signal in white Gaussian

noise can be done via the line-integral transform of the classical Wigner distribution. The line-integral
transform is known variously as the Hough transform and the Radon transform. For discrete-time signals,
the Wigner-type distribution defined by Claasen and Mecklenbrauker has become popular as a signal
analysis tool. Moreover, it is commonly believed that ML detection of a discrete-time chirp signal in
white Gaussian noise can be done via the line-integral transform of the Wigner-Claasen-Mecklenbrauker
distribution. This belief is false and results in loss of performance. We derive a Wigner-type distribution
for discrete-time signals whose line-integral transform can be used for ML detection of discrete-time
chirp signals in white Gaussian noise. We provide simulated Receiver Operating Curves for the Wigner-
Claasen-Mecklenbrauker distribution based method and the new ML-equivalent method and demonstrate
the suboptimality of the former.

I. Introduction
For a continuous-time signal r(t), the classical Wigner distribution is defined as [1]

Wr(t, ω) =
∫

r(t + τ/2)r∗(t − τ/2)e−jωτdτ, (1)

where t is time and ω is frequency. In [1], the Wigner distribution was shown to have many properties
that make it a useful signal analysis tool.

Suppose we have observed a continuous-time signal r(t) and want to detect the presence or absence
in r(t) of a chirp signal

s(t) = aej(ω0t+
1
2
mt2), (2)

with unknown parameters a, ω0 and m, and with the background being additive white Gaussian noise.
The classical maximum-likelihood method is equivalent to the hypothesis test

max
ω0,m

∣∣∣∣
∫

r(t)e−j(ω0t+
1
2
mt2)dt

∣∣∣∣2
H1

>
<
H0

γ, (3)

where

• H0 is the Noise-Only Hypothesis r(t) = w(t),
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• H1 is the Signal-plus-Noise Hypothesis r(t) = s(t) + w(t),
w(t) is white Gaussian noise and γ is a threshold whose value is set based on probability of error
considerations. More precisely, if the maximum on the left hand side (LHS) of (3) is less than the
threshold γ then H0 is considered true and if the maximum on the LHS of (3) is greater than the
threshold γ then H1 is considered true.

In [2], the hypothesis test (3) was shown to be approximately equivalent to

max
ω0,m

∫
Wr(t, ω0 + mt)

H1

>
<
H0

γ (4)

for chirp signals of large duration. This equivalence was shown in [3] to be exact and valid even for
finite-duration signals. More specifically, it was shown in [3] that∣∣∣∣

∫
r(t)e−j(ω0t+

1
2
mt2)dt

∣∣∣∣2 =
∫

Wr(t, ω0 + mt)dt, (5)

where the quantity on the right hand side is a line-integral transform of the Wigner-distribution variously
known as the Hough transform and the Radon transform. Detecting a chirp signal via the hypothesis test
(3) is known variously as the correlator method and the dechirp-Doppler method.

A study of the use of time-frequency distributions for detecting signals is found in [4].
For a discrete-time signal r(n), the Wigner distribution defined by Claasen and Mecklenbrauker [5]

has become popular as a signal analysis tool. Their definition of Wigner distribution is

W CM
r (n, θ) = 2

∑
k

r(n + k)r∗(n − k)e−j2kθ, (6)

where n is discrete-time and θ is frequency.
Suppose we have observed a discrete-time signal r(n), for n = 0, . . . , (N − 1), and want to detect the

presence or absence in r(n) of a chirp signal

s(n) =

{
b0e

j(b1n+ 1
2
b2n2) if 0 ≤ n ≤ (N − 1),

0 otherwise,
(7)

with unknown parameters b0, b1 and b2, with the background being additive white Gaussian noise.
Discrete-time chirp signals arise directly in pulse Doppler radars when a target is moving with acceleration
[8]. Discrete-time chirp signals also arise in synthetic aperture radars and inverse synthetic aperture radars.
A discrete-time chirp signal may also arise as a sampled-version of a continuous-time chirp signal. This
is the case, for example, in electronic counter measures to LFM radar and sonar. Many situations where
chirp signals occur in nature are described in [9].

For the above discrete-time detection problem, define

∆r(c1, c2) =

∣∣∣∣∣
N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2)

∣∣∣∣∣
2

. (8)

The classical Maximum-Likelihood (ML) method is then equivalent to the hypothesis test

max
c1, c2

∆r(c1, c2)

H1

>
<
H0

γ, (9)

where
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• H0 is the Noise-Only Hypothesis r(n) = v(n),
• H1 is the Signal-plus-Noise Hypothesis r(n) = s(n) + v(n),

v(n) is white Gaussian noise and γ is a threshold. We shall henceforth refer to the method of (9) as the
correlator method. Appendix I gives a brief derivation of the method of (9).

It is commonly and erroneously assumed that the equivalence of (5) for continuous-time signals carries
over to discrete-time signals as∣∣∣∣∣

∑
n

r(n)e−j(c1n+ 1
2
c2n2)

∣∣∣∣∣
2

=
∑
n

W CM
r (n, c1 + c2n), (10)

where the quantity on the right hand side is the line-integral transform of the Wigner distribution (6).
Based on this assumption, it is claimed, erroneously, that ML detection of the discrete-time chirp signal
s(n) is equivalent to the hypothesis test

max
c1, c2

∑
n

W CM
r (n, c1 + c2n)

H1

>
<
H0

γ. (11)

However, it has been observed in [6] that the W CM
r -based method (11) incurs a 3 dB loss due to non-

linearity.1 In Appendix IV, we provide simulated Receiver Operating Curves for the ML method (9) and
the W CM

r -based method (11) and demonstrate the suboptimality of the latter. Moreover, as we will show,
the range of unambiguosly measurable values of b1 for the W CM

r -based method (11) is half of that of
the correlator method (9).

In this paper, we derive a time-frequency distribution which is optimum for detecting discrete-time
chirp signals in white Gaussian noise, with the optimality being in the sense that ML detection can
be carried out via the line-integral transform of the derived time-frequency distribution. The derived
time-frequency distribution may be considered a Wigner-type distribution.

It turns out that the Wigner-type time-frequency distribution derived in this paper is the same as
that derived by Chan [7] in an effort to solve the problem of aliasing in the Wigner distribution (6).
Nevertheless, the optimality property of this distribution for detection of a discrete-time signal was not
observed in [7]. Therefore, in the context of signal detection, this discrete-time distribution seems new.

II. Three Wigner-type Time-Frequency Distributions for Discrete-Time Signals
In attempting to write ∆r(c1, c2) of (8) as the line-integral of a time-frequency distribution of r(n),

we arrive at three Wigner-type time-frequency distributions of a discrete-time signal. We first describe
these time-frequency distributions and in the next section we describe the actual line-integral transform.

Given a discrete-time signal r(n), we denote rπ(n) = r(n)ejπn. That is rπ(n) is the signal obtained
by frequency-shifting r(n) by π radians/second.

A. Type-I Wigner Distribution

The type-I Wigner distribution W I
r (n, θ) is defined as

W I
r (n, θ) =

∑
k

r(n + k)r∗(n − k)e−j2kθ, (12)

1The ratio between the output SNR and the input SNR is (c.f. equation (13) of [6])
SNRout
SNRin

=
(

N
2

)( NSNRin
NSNRin+1

)
, which

is less than N/2. The ratio approaches N/2 as NSNRin → ∞.
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where n is discrete-time and θ is frequency.
Note that W I

r (n, θ) is the same as W CM
r (n, θ) (c.f. (6)) defined in [5] except for the missing scaling

factor 2 at the front.
For a signal r(n) that is zero outside 0 ≤ n ≤ (N − 1), the type-I Wigner distribution W I

r (n, θ) is
zero outside 0 ≤ n ≤ (N − 1).

The following properties are easy to verify: W I
r (n, θ) is real, W I

r (n, θ) is a periodic function of θ with
period π, W I

rπ
(n, θ) = W I

r (n, θ). Thus W I
r (n, θ) is invariant to frequency-shifting the signal r(n) by π

radians/second.

B. Type-II Wigner Distribution

The type-II Wigner distribution W II
r (n, θ) is defined as

W II
r (n, θ) =

∑
k

r(n + k + 1)r∗(n − k)e−j(2k+1)θ, (13)

where n is discrete-time and θ is frequency.
For a signal r(n) that is zero outside 0 ≤ n ≤ (N − 1), the type-II Wigner distribution W II

r (n, θ) is
zero outside 0 ≤ n ≤ (N − 2).

The following properties are easy to verify: W II
r (n, θ) is real, W II

r (n, θ) is a periodic function of θ
with period 2π, W II

r (n, θ+π) = −W II
r (n, θ), W II

rπ
(n, θ) = −W II

r (n, θ). Thus frequency-shifting of the
signal r(n) by π radians/second causes a sign change in W I

r (n, θ).

C. Type-III Wigner Distribution

The type-III Wigner distribution W III
r (n, θ) is defined in terms of the type-I and type-II Wigner

distributions as follows.

W III
r (n, θ) =

{
W I

r (n/2, θ) for even n,
W II

r ((n − 1)/2, θ) for odd n.
(14)

Note that W III
r (n, θ) is the same as the “non-aliased discrete-time Wigner distribution” derived by

Chan in [7] in an effort to solve the aliasing problem of W CM
r (n, θ) (c.f. (6)) defined in [5].

For a signal r(m) that is zero outside 0 ≤ m ≤ (N − 1), the type-III Wigner distribution W III
r (n, θ)

is zero outside 0 ≤ n ≤ 2(N − 1). However, if we consider even n to correspond to integer values n/2
of time and odd n to correspond to half-integer values n/2 of time, then W III

r (n, θ) is zero outside the
time range 0 ≤ m ≤ (N − 1).

The following properties are obvious: W III
r (n, θ) is real, W III

r (n, θ) is a periodic function of θ with
period 2π. For even n, W III

rπ
(n, θ) = W III

r (n, θ). For odd n, W III
rπ

(n, θ) = −W III
r (n, θ).

III. A Wigner-Distribution Formulation of the ML Detection Problem for a
Discrete-Time Chirp Signal

For a discrete-time signal r(n) that is zero outside 0 ≤ n ≤ (N − 1), we have shown in Appendix II
that

∆r(c1, c2) =
2N−2∑
n=0

W III
r (n, c1 +

1
2
c2n). (15)

Thus we can calculate ∆r(c1, c2) by taking the type-III Wigner distribution W III
r (n, θ) of the discrete-

time signal r(n) and integrating it along the line with intercept c1 (value of θ at n = 0) and slope 1
2c2

(increment in θ per unit increment in n). This property of W III
r (n, θ) was not observed in [7]. Therefore,
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in the context of detection of discrete-time signals, the type-III Wigner distribution W III
r (n, θ) seems

new.
Relationship (15) implies that we can perform ML detection by the test

max
c1, c2

2N−2∑
n=0

W III
r (n, c1 +

1
2
c2n)

H1

>
<
H0

γ, (16)

where γ, H0 and H1 are as defined for the correlator method (9).

A. Advantages of the Type-III Wigner Distribution Based Method

In Appendix III, we have derived the type-I and type-III Wigner distributions for the discrete-time
chirp signal

s(n) =

{
ej(b1n+ 1

2
b2n2) if 0 ≤ n ≤ (N − 1)

0 otherwise.
(17)

If the chirp signal has complex amplitude b0 then the Wigner distributions must be scaled by |b0|2.
Thus, in the absence of any noise or interference, the Wigner distributions W I

r (n, θ) and W III
r (n, θ)

are concentrated along a straight line whose intercept of the frequency axis is b1 and the frequency/time
slope is b2. Therefore, the visual appeal of the W CM

r -based method (11) is retained by the W III
r -based

method (16). Moreover, any method of automatically detecting the line where W CM
r is concentrated can

be used for automatically detecting the line where W III
r is concentrated.

As the W III
r -based method (16) is mathematically equivalent to the correlator method (9), it has the

same Signal-to-Noise (SNR) performance as the ML method.
The properties of the type-I and type-III Wigner distributions stated in Section II show that the range

of unambiguously measurable values of b1 can be doubled by using the W III
r -based method instead of

the W CM
r -based method. More specifically,

• for the W CM
r -based method, the interval of unambiguously measurable values of b1 is [−π/2, π/2],

• for the W III
r -based method, the interval of unambiguously measurable values of b1 is [−π, π], which

is the maximum possible.

IV. Conclusion
In this paper, we considered detecting a discrete-time chirp signal, in the presence of additive white

Gaussian noise, via the line-integral transform of a time-frequency distribution of the observed signal.
We pointed out that the popular method, in which the line-integral transform of the Wigner-Classen-
Mecklenbrauker distribution is maximized, is not equivalent to the maximum-likelihood (ML) method.
We derived a Wigner-type distribution with the property that maximizing its line-integral transform is
equivalent to the ML method. We provided simulated Receiver Operating Curves for the Wigner-Claasen-
Mecklenbrauker distribution based method and the new ML-equivalent method and demonstrated the
suboptimality of the former. The use of the derived Wigner-type distribution also doubles the range
of unambiguously measurable values of the initial frequency parameter b1 of the chirp signal to the
maximum possible [−π, π].
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APPENDIX I

The Maximum Likelihood Method
Suppose we have observed a discrete-time signal r(n), for n = 0, . . . , (N − 1), and want to detect the

presence or absence in r(n) of a chirp signal

s(n) =

{
b0e

j(b1n+ 1
2
b2n2) if 0 ≤ n ≤ (N − 1),

0 otherwise,
(18)

with unknown parameters b0, b1 and b2, with the background being additive white Gaussian noise. The
classical Maximum-Likelihood (ML) method is then equivalent to the hypothesis test

max
c0, c1, c2

Λ(c0, c1, c2)

H1

>
<
H0

η, (19)

where

Λ(c0, c1, c2) =
N−1∑
n=0

|r(n)|2 −
N−1∑
n=0

∣∣∣r(n) − c0e
j(c1n+ 1

2
c2n2)

∣∣∣2 (20)

is the log-likelihood ratio,

• H0 is the Noise-Only Hypothesis r(n) = v(n),
• H1 is the Signal-plus-Noise Hypothesis r(n) = s(n) + v(n),

v(n) is white Gaussian noise and η is a threshold whose value is set based on probability of error
considerations. When H1 is considered true, the values of c0, c1, and c2 that maximize Λ(c0, c1, c2) are
the maximum likelihood estimates of b0, b1 and b2, respectively.

By writing

Λ(c0, c1, c2) = 2�
(

c∗0
N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2)

)
− |c0|2 N, (21)

= N


 1

N2

∣∣∣∣∣
N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2)

∣∣∣∣∣
2

−
∣∣∣∣∣ 1
N

N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2) − c0

∣∣∣∣∣
2

 , (22)

we conclude that for any fixed (c1, c2) pair, Λ(c0, c1, c2) is maximized by

c0 =
1
N

N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2), (23)

and for this choice of c0, Λ(c0, c1, c2) = 1
N ∆(c1, c2), where

∆(c1, c2) =

∣∣∣∣∣
N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2)

∣∣∣∣∣
2

. (24)

Therefore, the ML method is equivalent to the hypothesis test

max
c1, c2

∆(c1, c2)

H1

>
<
H0

γ, (25)
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where γ is a threshold (which can be related to η). When H1 is considered true, the values of c1 and c2

that maximize ∆(c1, c2) are the maximum likelihood estimates of b1 and b2 respectively.
Thus the ML method can be implemented as a correlator in the (c1, c2) plane. This method is also

known as the dechirp-Doppler method, i.e., first multiplying by e−j 1
2
c2n2

to obtain a pure complex
exponential, or nearly so, so that there will be little or no loss due to Doppler spreading when estimating
the frequency of the pure complex exponential by the conventional Doppler processing method.

APPENDIX II

Computing ∆r(c1, c2) via the Wigner Distributions
For a discrete-time signal r(n) that is zero outside 0 ≤ n ≤ (N −1), we show how to write ∆r(c1, c2)

(c.f. (8)) as the line-integral of a time-frequency distribution of r(n).
We begin by writing ∆r(c1, c2) as the double summation

∆r(c1, c2) =
N−1∑
n1=0

N−1∑
n2=0

r(n1)r∗(n2)e−j(c1(n1−n2)+
1
2
c2(n2

1−n2
2)), (26)

=
N−1∑
n1=0

N−1∑
n2=0

r(n1)r∗(n2)e−j(n1−n2)(c1+
1
2
c2(n1+n2)). (27)

Then we break the double summation into two double summations - one double summation being
over n1 and n2 where (n1 − n2) is even and the other double summation being over n1 and n2 where
(n1 − n2) is odd. Thus we define

∆I
r(c1, c2) =

∑N−1
n1=0

∑N−1
n2=0

(n1 − n2) is even
r(n1)r∗(n2)e−j(n1−n2)(c1+

1
2
c2(n1+n2)), (28)

and

∆II
r (c1, c2) =

∑N−1
n1=0

∑N−1
n2=0

(n1 − n2) is odd
r(n1)r∗(n2)e−j(n1−n2)(c1+

1
2
c2(n1+n2)). (29)

To compute ∆I
r(c1, c2), we use the change of variables2

n1 + n2 = 2m, (30)

n1 − n2 = 2k, (31)

define l = min(m,N − 1 − m) and obtain

∆I
r(c1, c2) =

N−1∑
m=0

l∑
k=−l

r(m + k)r∗(m − k)e−j2k(c1+c2m), (32)

=
N−1∑
m=0

W I
r (m, c1 + c2m). (33)

Similarly, to compute ∆II
r (c1, c2), we use the variable change

n1 + n2 = 2m + 1, (34)

n1 − n2 = 2k + 1, (35)

2Note that n1 + n2 is even if and only if n1 − n2 is even.
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define l = min(m,N − 2 − m) and obtain

∆II
r (c1, c2) =

N−2∑
m=0

l∑
k=−(l+1)

r(m + k + 1)r∗(m − k)e−j(2k+1)(c1+
1
2
c2+c2m),

(36)

=
N−2∑
m=0

W II
r (m, c1 +

1
2
c2 + c2m). (37)

By combining (33) and (37), we obtain

∆r(c1, c2) = ∆I
r(c1, c2) + ∆II

r (c1, c2), (38)

=
N−1∑
m=0

W I
r (m, c1 + c2m) +

N−2∑
m=0

W II
r (m, c1 +

1
2
c2 + c2m), (39)

=
N−1∑
m=0

W III
r (2m, c1 +

1
2
c22m) +

N−2∑
m=0

W III
r (2m + 1, c1 +

1
2
c2(2m + 1)),

(40)

=
2N−2∑
m = 0

(m is even)

W III
r (m, c1 +

1
2
c2m) +

2N−2∑
m = 0

(m is odd)

W III
r (m, c1 +

1
2
c2m), (41)

=
2N−2∑
m=0

W III
r (m, c1 +

1
2
c2m). (42)

Thus we have proved (15) of Section III.

APPENDIX III

Wigner Distributions of a Discrete-Time Chirp Signal
Here we derive the type-I, type-II, and type-III Wigner distributions for the discrete-time chirp signal

s(n) =

{
ej(b1n+ 1

2
b2n2) if 0 ≤ n ≤ (N − 1)

0 otherwise.
(43)

These Wigner distributions are defined in Section II.

A. Type-I Wigner Distribution

The type-I Wigner distribution W I
s (n, θ) is defined as

W I
s (n, θ) =

∑
k

s(n + k)s∗(n − k)e−j2kθ. (44)

The signal product term s(n+k)s∗(n−k) is zero outside the ranges 0 ≤ n ≤ (N −1) and −min(n,N −
1 − n) ≤ k ≤ min(n,N − 1 − n). Thus W I

s (n, θ) = 0 outside 0 ≤ n ≤ (N − 1).
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Define l = min(n,N − 1 − n). In terms of this, for 0 ≤ n ≤ (N − 1),

W I
s (n, θ) =

l∑
k=−l

ej(b1(n+k)+ 1
2
b2(n+k)2)e−j(b1(n−k)+ 1

2
b2(n−k)2)e−j2kθ, (45)

=
l∑

k=−l

ej(b12k+ 1
2
b24nk)e−j2kθ, (46)

=
l∑

k=−l

e−j(θ−(b1+b2n))2k, (47)

which is a sum of a geometric series that can be easily evaluated. To do this, we substitute α = θ −
(b1 + b2n) into the summation

l∑
k=−l

e−j2αk =

{
2l + 1 if α = 0 mod π,
sin[α(2l+1)]

sinα otherwise.
(48)

Thus, for 0 ≤ n ≤ (N − 1),

W I
s (n, θ) =

{
2l(n) + 1 if α(n) = 0 mod π,
sin[α(n)(2l(n)+1)]

sinα(n) otherwise.
, (49)

where l(n) = min(n,N − 1 − n) and α(n) = θ − (b1 + b2n). In a 3-dimensional plot, W I
s (n, θ) has

ridges along the lines given by α(n) = 0 mod π and the common height of these ridges is 2l(n) + 1.

B. Type-II Wigner Distribution

The type-II Wigner distribution W II
s (n, θ) is defined as

W II
s (n, θ) =

∑
k

s(n + k + 1)s∗(n − k)e−j(2k+1)θ. (50)

The signal product term s(n + k + 1)s∗(n − k) is zero outside the ranges 0 ≤ n ≤ (N − 2) and
−min(n + 1, N − 1 − n) ≤ k ≤ min(n,N − 2 − n). Thus W II

s (n, θ) = 0 outside 0 ≤ n ≤ (N − 2).
Define l = min(n,N − 2 − n). In terms of this, for 0 ≤ n ≤ (N − 2),

W II
s (n, θ) =

l∑
k=−(l+1)

ej(b1(n+k+1)+ 1
2
b2(n+k+1)2)e−j(b1(n−k)+ 1

2
b2(n−k)2)e−j(2k+1)θ,

(51)

=
l∑

k=−(l+1)

ej(b1(2k+1)+ 1
2
b2(4nk+2n+2k+1))e−j(2k+1)θ, (52)

=
l∑

k=−(l+1)

e−j(θ−(b1+
1
2
b2+b2n))(2k+1), (53)

= e−j(θ−(b1+
1
2
b2+b2n))

l∑
k=−(l+1)

e−j(θ−(b1+
1
2
b2+b2n))2k, (54)

which is a scaled version of a sum of a geometric series that can be easily evaluated. To do this, we
substitute α = θ − (b1 + 1

2b2 + b2n) into the summation

l∑
k=−(l+1)

e−j2αk =

{
2l + 2 if α = 0 mod π,

ejα
(

sin[2α(l+1)]
sinα

)
,

(55)
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or directly into the scaled version

e−jα
l∑

k=−(l+1)

e−j2αk =

{
e−jα(2l + 2) if α = 0 mod π,
sin[2α(l+1)]

sinα ,
(56)

=




(2l + 2) if α = 0 mod 2π,
−(2l + 2) if α = π mod 2π,
sin[2α(l+1)]

sinα .

(57)

Thus, for 0 ≤ n ≤ (N − 2),

W II
s (n, θ) =




2l(n) + 2 if α(n) = 0 mod 2π,
−(2l(n) + 2) if α(n) = π mod 2π,
sin[2α(n)(l(n)+1)]

sin α(n) otherwise.
, (58)

where l(n) = min(n,N−2−n) and α(n) = θ−(b1+ 1
2b2+b2n). In a 3-dimensional plot, W II

s (n, θ) has
ridges along the lines given by α(n) = 0 mod 2π and the common height of these ridges is 2l(n) + 2.
In a 3-dimensional plot, W II

s (n, θ) also has valleys along the lines given by α(n) = π mod 2π and the
common depth of these ridges is 2l(n) + 2.

C. Type-III Wigner Distribution

The type-III Wigner distribution W III
s (n, θ) is defined in terms of the type-I and type-II Wigner

distributions as

W III
s (n, θ) =

{
W I

s (n/2, θ) for even n,
W II

s ((n − 1)/2, θ) for odd n.
(59)

Define l(n) = min(n
2 , N − 1 − n

2 ) and α(n) = θ − (b1 + 1
2b2n).

For n even and 0 ≤ n ≤ 2(N − 1),

W III
s (n, θ) =

{
2l(n) + 1 if α(n) = 0 mod π,
sin[α(n)(2l(n)+1)]

sinα(n) otherwise.
(60)

For n odd and 0 ≤ n ≤ 2(N − 1),

W III
s (n, θ) =




2l(n) + 1 if α(n) = 0 mod 2π,
− [2l(n) + 1] if α(n) = π mod 2π,
sin[α(n)(2l(n)+1)]

sinα(n) otherwise.
(61)

Combining the above, for all 0 ≤ n ≤ 2(N − 1),

W III
s (n, θ) =




2l(n) + 1 if α(n) = 0 mod 2π,
(−1)n [2l(n) + 1] if α(n) = π mod 2π,
sin[α(n)(2l(n)+1)]

sinα(n) otherwise.
(62)

In a 3-dimensional plot, W III
s (n, θ) has ridges along the lines given by α(n) = 0 mod 2π and the

common height of these ridges is 2l(n) + 1. In a 3-dimensional plot, W III
s (n, θ) also has oscillations

along the lines given by α(n) = π mod 2π; the common period of these oscillations is one and the
common (instantaneous) amplitude is 2l(n) + 1.
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APPENDIX IV

Receiver Operating Curve Comparison
Here we present the Receiver Operating Curves (ROCs) obtained by simulation of the Type-I and

Type-III Wigner distribution based methods for the case N = 128 and Output SNR = 7 dB, where
Output SNR is defined as N

( a
σ

)2. For simplicity, the parameters of the chirp signal were assumed to be
known. The suboptimality of the Type-I Wigner distribution based method can be clearly seen.
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Figure 1: ROCs for probability of false alarm ranging from 0 to 1
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Figure 2: ROCs for probability of false alarm ranging from 0 to 0.1
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